

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS)

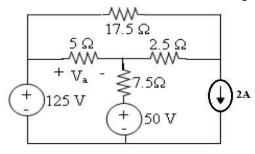
Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: Network Analysis(16EE205) Course & Branch: B.Tech - ECE

Year & Sem: I-B.Tech & II-Sem **Regulation: R16**

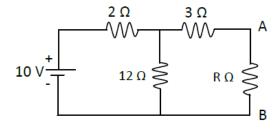
UNIT –I


INTRODUCTION

1. a) What do you mean by an electric network and an electric circuit?

[L1] [4M]

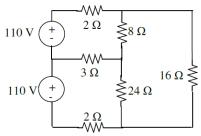
b) Find the value of V_a for the following circuit using KVL.


[L3] [6M]

a) Explain the concept of source transformation?

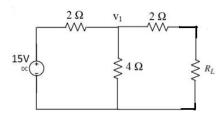
[L3] [4M]

b) Find the maximum power delivered to the load by using maximum power transfer theorem for the following circuit. [L3] [6M]

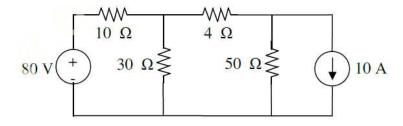


(a) State and explain Kirchhoff's laws?

[L3] [4M]


(b) Using nodal analysis find all branch currents for the following circuit

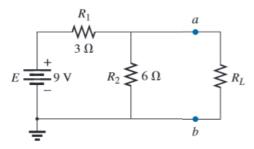
[L3] [6M]


- 4. a) What is the condition for maximum power transfer to the load?
 - b) Find Thevenin's equivalent for the following circuit.

- [L3] [4M]
- [L3] [6M]

5. a) State and explain Superposition theorem?

- [L3] [4M]
- b) Verify Superposition theorem for 4Ω resistor for the following circuit.
- [L3] [6M]

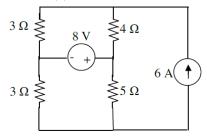


6. a) State and explain milliman's theorem.

[L3] [4M]

b) Find Norton's equivalent for the following circuit.

[L3] [6M]

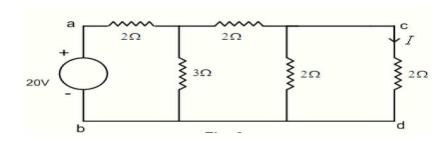


7. (a) State Kirchhoff's voltage law?

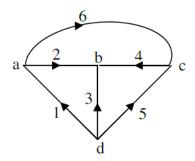
[L3] [4M]

(b) Find branch currents for the following circuit.

[L3] [6M]

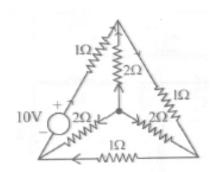


8. a)State and explain Norton's theorem?


[L3] [4M]

b) Verify the reciprocity theorem for the network shown in fig.

[L3] [6M]



- 9. (a) Define the following terms
 - (i) Branch
- (ii) Sub graph (iii) Node
- (iii) Tree
- [L3] [4M]
- (b) For the graph shown below find incidence and cut set matrices.
- [L3] [6M]

10. (a) Define and state the properties of incidence matrix.

- [L2] [4M]
- (b) For the network shown below draw the graph and find incidence and tie set matrices.
 - [L3] [6M]

Page 4

Electrical Circuits (16EE201)

SIDDHARTH GROUP OF INSTITUTIONS:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : Electrical Circuits(16EE201) Course & Branch: B.Tech - EEE

Year & Sem: I-B.Tech & II-Sem **Regulation:** R16

UNIT-II

AC CIRCUITS

1. a) What is time constant? What are the time constants of series RL and RC circuits? [L3] [4M]	
b) Deduce the transient response source free series RC circuit.	[L3] [6M]
2. (a) Explain about properties of Exponential Response of RLC circuits.	[L3] [4M]
(b) Deduce the transient response source free series RL circuit	[L3] [6M]
3.(a) Explain about Source free RL and RC Circuits.	[L3] [4M]
(b) Explain the complete response of source free series RLC Circuits.	[L3] [6M]
4. (a) Explain about Natural & Forced Response of RLC Circuits.	[L3] [4M]
(b) Explain the complete response of source free parallel RLC Circuits.	[L3] [6M]
4.a) Define Admittance	[L3] [2M]
b) The impedances of parallel circuit are $Z1=(6+j8)$ ohms and $Z2=(8-j6)$ ohms. If the	
applied voltage is 120V, find (i) current and power factor of each branch (ii) overall current	
(iii) power consumed by each impedance. Draw the phasor diagram.	[L3] [8M]
5.(a) Explain the phasor relation for R,L,C elements.	[L3] [4M]
(b) A resistor of 50Ω , inductance of $100mH$ and a capacitance of $100\mu F$ are connected in	
series across 200V, 50Hz supply. Determine the following	[L3] [6M]
(i) Impedance (ii) current flowing through the circuit (iii)	power factor
(iv) voltage across R,L &C (v) power in watts	
6. (a) Explain the phasor relation for series RL and RC circuit.	[L3] [4M]
(b) A 120V AC circuit contain 10 Ω resistance and 30 Ω inductive reactance in series. What	
is average power of this circuit.	[L3] [6M]
7. (a) Explain the phasor relation for parallel RLC circuit.	[L2] [4M]
(b) A parallel RLC circuit is supplied with a voltage source of 230 V, 50Hz. Determine	
circuit current and power factor if R=40Ω, L=0.2H and C=50μF.	[L3] [6M]
0 (-) D. C	FT 21 F4N41
8. (a) Define power factor, apparent power, active power and reactive power.	[L3] [4M]
(b) The impedances of parallel circuit are $Z1=(4+j6)$ ohms and $Z2=(12-j8)$ ohms. If the	
applied voltage is 220V, find (i) current and power factor of each branch (ii) overall current	
(iii) power consumed by each impedance. Draw the phasor diagram.	[L3] [6M]
9. (a) Explain the phasor relation for parallel RL and RC elements.	[L3] [4M]

(b) A 120V AC circuit contain 10 Ω resistance and 30 Ω inductive reactance in series. What is average power of this circuit. [L3] [6M]

10. (a) Explain the characteristics of sinusoids.

[L3] [4M]

(b) A resistor of 150Ω , inductance of 200mH and a capacitance of 10μ F are connected in series across 500V, 150Hz supply. Determine the following [L3] [6M]

(i) Impedance

(ii) current flowing through the circuit

(iii) power factor

(iv) voltage across R,L &C

(v) power in watts

SIDDHARTH GROUP OF INSTITUTIONS:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: Electrical Circuits(16EE201) Course & Branch: B.Tech - EEE

Year & Sem: I-B.Tech & II-Sem **Regulation:** R16

UNIT-III

RESONANCE & MAGNETICALLY COUPLED CIRCUITS

- 1. A series RLC circuit has $R=10\Omega$, L=0.5H and C=40 μ F. The applied voltage is 100V. Find (a) Resonant frequency & Quality factor of a coil (b) Bandwidth (c) Upper and lower Half power frequencies (d) Current at resonance & current at half power points (e) Voltage across inductance & voltage across capacitance at resonance. [L3] [10M]
- 2. (a) In a parallel resonance circuit (Tank circuit) $R=2\Omega$, L=1mH and $C=10\mu F$, Find the Resonant frequency, Dynamic impedance and Bandwidth. [L3] [6M]
 - (b) Obtain the expression for resonant frequency for parallel RL-RC circuit. [L3] [4M]
- 3. Obtain the expression for resonant frequency, bandwidth and Q-factor for parallel R-L-C circuit. [L3] [10M]
- 4. Obtain the expression for resonant frequency, bandwidth and Q-factor for Series R-L-C [L3] [10M]
- 5. Show that the resonant frequency circuit $f_r^2 = f_1 f_2$ where f_1 and f_2 are the half power frequencies and f_r is the resonant frequency. [L3] [10M]
- 6. Write the comparison between series resonance and parallel resonance? [L2] [10M]
- 7. Define and explain self and mutual inductance. [L3] [10M]
- 8. a) Explain about dot convention in mutually coupled circuits. [L1] [4M]
 - b) Discuss briefly about energy considerations in mutually coupled circuits. [L3] [6M]
- 9. Explain about linear transformer and ideal transformer. [L2] [10M]
- 10. In a parallel Resonant circuit shown in figure. (1), find the Resonant frequency, Dynamic Impedance, Bandwidth, Q-factor and Current at resonance? [L3] [10M]

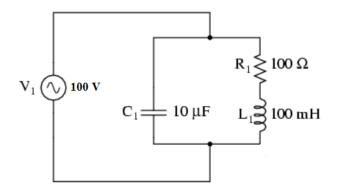
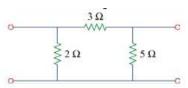


Fig.(1)

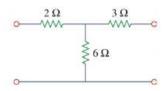
SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

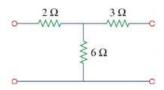

QUESTION BANK (DESCRIPTIVE)

Subject with Code: Electrical Circuits(16EE201) Course & Branch: B.Tech - EEE

Year & Sem: I-B.Tech & II-Sem **Regulation:** R16


UNIT-IV TWO PORT NETWORKS & STATE VARIABLE ANALYSIS

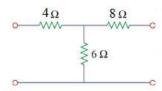
1. a) Find the Z- parameters for the following circuit. [L3] [6M]


b) Express ABCD parameters in terms of h parameters. [L3] [4M]

2. a) Find the Y- parameters for the following circuit. [L3] [6M]

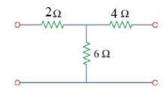
b) Express h parameters in terms of ABCD parameters. [L3] [4M]

3. a) Find the ABCD parameters for the following circuit. [L3] [6M]

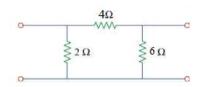


b) Express Y parameters in terms of h parameters.

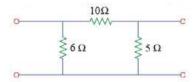
[L3] [4M]


4. a) Find the h- parameters for the following circuit.

[L3] [6M]


b) Find the relationship between Z and h parameters.

- [L3] [4M]
- 5. Find the Z and Y parameters for the following circuit.
- [L3] [10M]


6. a) Find the Y- parameters for the following circuit.

[L3] [6M]

b) Express Z parameters in terms of ABCD parameters.

- [L3] [4M]
- 7. Find the ABCD and h parameters for the following circuit.
- [L3] [10M]

- 8. Explain about the state variables and state variables of circuits. [L3] [10M]
- 9. a) What are the advantages of state variable analysis.
- [L3] [4M]
- b) The transfer function of a system is G(s)=2/(s+1)(s+2). Obtain a state variable representation for the system. [L3] [6M]
- 10. Explain about proper and improper behavior of the circuits.
- [L3] [10M]

SIDDHARTH GROUP OF INSTITUTIONS:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : Electrical Circuits(16EE201) Course & Branch: B.Tech - EEE

Year & Sem: I-B.Tech & II-Sem **Regulation:** R16

UNIT-V FILTERS

1. a) Explain Neper and Decibel.	[L2] [4M]
b) What is a constant K low pass filter, derive its characteristics impedance.	[L2] [6M]
2. a) What is a filter? Explain about various types of filters.	[L2] [4M]
b) Explain the classification of pass band and stop band in detail.	[L2] [6M]
3. Derive the expression for characteristic impedance in a pass band filter.	[L2] [10M]
4. Explain the design procedure for a constant K low pass filter and its characteristics.	[L2] [10M]
5. Design a constant K high pass filter and explain its design procedure in detail.	[L2] [10M]
6. What is high pass filter. Explain the general configuration and parameters of a con	tant-K high
pass filter.	[L2] [10M]
7. What is an m-derived filter? Explain the general configuration and parameters of	m-derived low
pass filter.	[L2] [10M]
8. Derive necessary expressions for m-derived high pass filter.	[L2] [10M]
9. Give the analysis for the design of constant-K band pass filter.	[L2] [10M]
10. Design a band elimination filter and explain its design procedure in detail.	[L2] [10M]

Prepared by:

C.R.HEMAVATHI ASSISTANT PROFESSOR **DEPT. OF EEE SIETK**